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Introduction I
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Ordinary Matter makes up only
4% of the Universe !

Galaxies and galaxy cluster are embedded
in an invisible structure, the so called
dark matter !

The universe is dominated by an even more
exotic component, called Dark Energy !
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Introduction I
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60% − 80% of the Baryons are
also ’dark’ !Ordinary Matter makes up only

4% of the Universe !

Galaxies and galaxy cluster are embedded
in an invisible structure, the so called
dark matter !

The universe is dominated by an even more
exotic component, called Dark Energy !
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Introduction II
Evolution of the structures in the Universe

Cosmic Microwave Background, early picture of the structure in the Universe.

t = 0.38 Myr
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Introduction II
Evolution of the structures in the Universe

(T = 13.7 Gyr)Cosmic structure today

Cosmological Simulation
CINECA Keyproject 2002

Density

275 Mpc

t = 0.38 Myr

Temperature

05/12/2006 – p. 3



Introduction II
Evolution of the structures in the Universe

Simulation

T = 13.7 Gyr

40 Mpc

"Zoomed" Simulation of a galaxy cluster

galaxy cluster g1

Density Temperature

275 Mpc

t = 0.38 Myr
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Introduction II
Evolution of the structures in the Universe

For precisely measuring the
cosmological parameter we need

and all relevant physical
processes within.

relevant astronomical objects
a detailed understanding of the

T = 13.7 Gyr density fluctuations
Measured power−spectra of

Taken from Tegmark et al. 2003

t = 0.38 Myr
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+

+

+

+

+
+

+

0.4 0.6 0.8 1.0 [Degrees]0.20.0

Pavo

Coma

Perseus

Hydra

A3627

Centaurus

Virgo

Recent developments

Max Planck Institute for Astrophysics

Dolag et al. 2005

Sijacki & Springel 2006

Turbulence
Dolag et al. 2005

Magnetic Fields
Pfrommer, Springel, Ensslin & Jubelgas 2006

Shocks & Cosmic Rays

AGN − Cluster interaction

05/12/2006 – p. 3



Lecture slides kindly provided by Volker Springel from the 

Summer school on cosmological numerical simulations

 

Klaus Dolag

Max-Planck-Institute for 
Astrophysics

Helmholtz School of Astrophysics
Potsdam, July/August 2006



The N-body method uses a finite set of particles to sample the 
underlying distribution function
 

"MONTE-CARLO" APPROACH TO COLLISIONLESS DYNAMICS

We discretize in terms of N particles, which approximately move along characteristics of the 
underlying system.

The need for gravitational softening:

Prevent large-angle particle scatterings and the formation of 
bound particle pairs.

Ensure that the two-body relexation time is sufficiently 
large.

Allows the system to be integrated with low-order 
intergations schemes.

Needed for faithful 
collisionless behaviour}



Two conflicting requirements complicate the study of hierarchical 
structure formation
 

DYNAMIC RANGE PROBLEM FACED BY COSMOLOGICAL SIMULATIONS 

Want small particle mass 
to resolve internal structure 
of halos

Problems due to a small box size: 
Fundamental mode goes non-linear soon after 
the first halos form.    Simulation cannot be 
meaningfully continued beyond this point.

No rare objects (the first halo, rich galaxy 
clusters, etc.) 

Want large volume to 
obtain respresentative 
sample of universe

Problems due to a large particle mass: 
Physics cannot be resolved.

Small galaxies are missed.

At any given time, halos exist on a large range of mass-scales !

need large N
where N is the particle number 



Several questions come up when we try to use the N-body 
approach for cosmological simulations

How do we compute the gravitational forces efficiently and 
accurately?

How do we integrate the orbital equations in time?

How do we generate appropriate initial conditions?

Note: The naïve 
computation of the forces 
is an N2 - task.



The particle mesh (PM) 
force calculation



Poisson's equation can be solved in real-space by a convolution of the 
density field with a Green's function.

The particle-mesh method

In Fourier-space, the convolution becomes a simple multiplication!

Example for
vacuum boundaries:

Solve the potential in these steps:

(1)  FFT forward of the density field
(2)  Multiplication with the Green's function
(3)  FFT backwards to obtain potential

The four steps of the PM algorithm
(a)  Density assignment
(b)  Computation of the potential
(c)  Determination of the force field
(d)  Assignment of forces to particles



Density assignment
set of discrete 
mesh centres

h

Give particles a “shape” S(x). Then to each mesh cell, we assign the fraction of mass that falls into this 
cell. The overlap for a cell is given by:

The assignment function is hence the convolution:

where

The density on the mesh is then a sum over the contributions of each particle as given by the assignment 
function:

Density assignment



Name Shape function S(x) # of cells 
involved

Properties of force

NGP
Nearest grid point

CIC
Clouds in cells

TSC
Triangular shaped clouds

piecewise constant in 
cells

piecewise linear, 
continuous

continuous first derivative

Note: For interpolation of the grid to obtain the forces, the same assignment function needs to be used to ensure 
momentum conservation. (In the CIC case, this is identical to tri-linear interpolation.)

Commenly used particle shape functions and assignment 
schemes



Finite differencing of the potential to get the force field

Approximate the force field                               with finite 
differencing

2nd order accurate scheme:

4th order accurate scheme:

Interpolating the mesh-forces to the particle locations

The interpolation kernel needs to be the same one used for mass-assignment to ensure force 
anti-symmetry.

Finite differencing of the potential to get the force field



Advantages and disadvantages of the PM-scheme

Pros: SPEED and simplicity

Cons: ● Spatial force resolution 
limited to mesh size.

● Force errors somewhat 
anisotropic on the scale of 
the cell size

serious problem:

cosmological simulations cluster 
strongly and have a very large 
dynamic range

cannot make the PM-mesh fine 
enough and resolve internal structure 
of halos as well as large cosmological 
scales

we need a method to increase the dynamic range available in the 
force calculation



Particle-Particle PM schemes (P3M)

Idea: Supplement the PM force with a direct summation short-range force at the scale of the 
mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP3M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down, but 
has higher complexity and ambiguities 
in mesh placement

Codes that use AP3M: HYDRA         (Couchman)



TREE algorithms



Idea: Group distant particles 
together, and use their multipole 
expansion.

Only ~ log(N) force terms per particle.

Gravity is the driving force for structure formation in the universe
 

HIERARCHICAL TREE ALGORITHMS

The N2 - scaling of direct summation 
puts serious limitations on N...

But we want N ~ 106-1010  for 
collisionless dynamics of dark matter !



Tree algorithms
Oct-tree in two dimensions

level 0

level 1

level 2

level 3

Idea: Use hierarchical multipole expansion to 
account for distant particle groups

r

s

center-of-mass

origin

We expand:

for

and obtain:

the dipole term 
vanishes when 
summed over all 
particles in the 
group





The multipole moments are computed for each node of the 
tree

Monpole moment:

Quadrupole tensor:

Resulting potential/force approximation:

For a single force evaluation, not N single-particle forces need to be computed, but only 
of order log(N) multipoles, depending on opening angle.

● The tree algorithm has no intrinsic restrictions for its dynamic range
● force accuracy can be conveniently adjusted to desired level
● the speed does depend only very weakly on clustering state
● geometrically flexible, allowing arbitrary geometries



TreePM force
calculation algorithm



Particularly at high redshift, it is expensive to obtain accurate forces  
with the tree-algorithm
THE TREE-PM FORCE SPLIT

Idea: Split the potential (of a single particle) in Fourier space into a long-range and a short-range 
part, and compute them separately with PM and TREE algorithms, respectively.

Periodic peculiar 
potential

Poisson equation
in Fourier space:

Solve with PM-method
● CIC mass assignment
● FFT
● multiply with kernel
● FFT backwards
● Compute force with 4-point 

finite difference operator
● Interpolate forces to particle 

positions

Solve in real space with TREE

FFT to real space



In the TreePM algorithm, the tree has to be walked locally only
PERFORMANCE GAIN DUE TO LOCAL TREE WALK

~ 5 rs

● Accurate and fast long-range force
● No force anisotropy
● Speed is largely insensitive to clustering (as for 

tree algorithm)
● No Ewald correction necessary for periodic 

boundary conditions

Using zero-padding and a different 
Greens-Function, the long-range force 
can also be computed for vaccuum 
boundaries using the FFT. 
(Implemented in Gadget-2)

Advantages of TreePM include:



Cosmological N-body simulations have grown rapidly in size over the 
last three decades
 

"N" AS A FUNCTION OF TIME

Computers double 
their speed every 
18 months 
(Moore's law)

N-body 
simulations have 
doubled their size 
every 16-17 
months

Recently, growth 
has accelerated 
further. 
The Millennium Run 
should have become 
possible in 2010 – we 
have done it in 2004 !



Organization of tree and 
domain decomposition



The tree-algorithm of Gadget-2 has been optimized for providing better 
memory locality
REDUCTION OF CACHE MISSES AND DOMAIN DECOMPOSITION

Idea: Order the particles along a space-filling curve

Hilbert's curve: A fractal that fills the square



The space-filling Hilbert curve can be readily generalized to 3D
THE PEANO-HILBERT CURVE



A space-filling Peano-Hilbert curve is used in GADGET-2 for a novel 
domain-decomposition concept
 

HIERARCHICAL TREE ALGORITHMS



GADGET2 supports 
different types of 
simulation set-ups
 

OVERVIEW OF TYPES OF 
SIMULATIONS POSSIBLE 
WITH GADGET



In a parallel code, numerous sources of performance losses can limit 
scalability to large processor numbers
TROUBLING ASPECTS OF PARALLELIZATION

Incomplete parallelization
The residual serial part in an application limits the theoretical speed-up one can achieve 
with an arbritrarily large number of CPUs ('Ahmdahl's Law'), e.g. 5% serial code left, then 
parallel speed-up is at most a factor 20.

Parallelization overhead
The bookkeeping code necessary for non-trivial communication algorithms increases the 
total cost compared to a serial algorithm. Sometimes this extra cost increases with the 
number of processors used. 

Communication times
The time spent in waiting for messages to be transmitted across the network (bandwith) 
and the time required for starting a communication request (latency).

Wait times
Work-load imbalances will force the fastest CPU to idly wait for the slowest one. 

Strong scaling:  Keep problem size fixed, but increase number of CPUs
Weak scaling:    When number of CPUs is increased, also increase the problem size

           As a rule, scalability can be more easily retained in the weak scaling regime.

In practice, it usually doesn't make sense to use a large number of processors 
for a (too) small problem size !



The time-steps of particles are spatially correlated
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Systemstep
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Systemstep"FLEXSTEPS" power-2
stepping in GADGET



The inhomogeneous 
particle distribution 
and the different 
timesteps as a 
function of density 
make it challenging 
to find an optimum 
domain 
decomposition that 
balances work-load 
(and ideally memory-
load)

PARTICLE 
DISTRIBUTION IN AN 
EXPONENTIAL DISK



GADGET-1 
used a simple 
orthogonal 
recursive 
bisection
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-1



GADGET-2 
uses a more 
flexible space-
filling Peano-
Hilbert curve 
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-2



GADGET-3 
uses a space-
filling Peano-
Hilbert curve 
which is more 
flexible
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-3



Basics of SPH



The baryons in the universe can be modelled as an ideal gas
 

BASIC HYDRODYNAMICAL EQUATIONS

Euler equation:

Continuity equation:

First law of 
thermodynamics:

Equation of state of ideal 
monoatomic gas:



What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:



Kernel interpolation is used in smoothed particle hydrodynamics (SPH) 
to build continous fluid quantities from discrete tracer particles
 

DENSITY ESTIMATION IN SPH BY MEANS OF ADAPTIVE KERNEL ESTIMATION

SPH kernel (B-spline)
normalized to 1

This leads to the SPH density estimate, for

Kernel interpolant of an arbitrary function:

If the function is only known at a set 
of discrete points, we approximate the 
integral as a sum, using the 
replacement:

This can be 

differentiated !



Kernel interpolants allow the construction of derivatives from a set of 
discrete tracer points
 

EXAMPLES FOR ESTIMATING THE VELOCITY DIVERGENCE

Smoothed estimate for the velocity field:

Velocity divergence can now be readily estimated:

But alternative (and better) estimates are possible also:

Invoking the identity

one gets a “pair-wise” formula:



Continuity equation 
automatically fulfilled.

What is smoothed particle hydrodynamics?
 

BASIC EQUATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

Euler equation

First law of 
thermodynamics

Artificial viscosity

Each particle carries either the energy or the entropy per unit mass as 
independent variable

Density estimate



Viscosity and shock 
capturing



An artificial viscosity needs to be 
introduced to capture shocks
 

SHOCK TUBE PROBLEM AND VISCOSITY

viscous force:

parameterization of the artificial viscosity:

heat production rate:



Variational derivation of  
SPH



The traditional way to derive the SPH equations leaves room 
for many different formulations
 

SYMMETRIZATION CHOICES

Symmetrized kernel:

Symmetrization of pressure terms:

Using

Is there a best choice?



For an adiabatic flow, temperature can be derived from the 
specific entropy
 

ENTROPY FORMALISM

for an adiabtic flow:

don't intergrate the temperature, 
but infer it from:

Use an artificial viscosity to 
generate entropy in shocks:

Definition of an 
entropic function:



None of the adaptive SPH schemes conserves energy and 
entropy simultaneously 
 

CONSERVATION LAW TROUBLES

If the thermal energy is integrated, 
entropy conservation can be violated...

Hernquist (1993):

If the entropy is integrated, total energy 
is not necessarily conserved...

The trouble is caused by varying smoothing lengths...

Do we have to worry about this?

Can we do better?

YES

YES



A fully conservative formulation of SPH 
 

DERIVATION

Lagrangian:

Constraints:

Equations of motion:

Springel & Hernquist (2002)



Movies
• Millennium Simulation, zoom in, flight through.
• Shock hits cloud test.
• Colliding Galaxies with Black Hole
• Fly though gas in galaxy cluster static, evolving.
• Substructure of galaxy clusters.
• Formation of a galaxy clusters (gas,stars).
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