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Interpolation, Smoothing, Extrapolation

A typical numerical application is to find a smooth parametrization

of available data so that results at intermediate (or extended)

positions can be evaluated.

What is a good estimate for

y for x=4.5, or x=15 ?

Options: if have a model, y=f(x),

then fit the data and extract

model parameters.  Model then

used to give values at other

points.

If no model available, then use a

smooth function to interpolate
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Interpolation

Start with interpolation.  Simplest - linear interpolation.  Imagine

we have two values of x, xa and xb, and values of y at these points,

ya, yb. Then we interpolate (estimate the value of y at an

intermediate point) as follows:

y = ya +
(yb ya )

(xb xa )
(x xa )

a

b
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Interpolation

Back to the initial plot: y = ya +
(yb ya )

(xb xa )
(x xa )

Not very satisfying.  Our intuition

is that functions should be

smooth.  Try reproducing with a

higher order polynomial.  If we

have n+1 points, then we can

represent the data with a

polynomial of order n.
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Interpolation

Fit with a 10th order polynomial.

We go through every data point

(11 free parameters, 11 data

points).  This gives a smooth

representation of the data and

indicates that we are dealing with

an oscillating function.  However,

extrapolation is dangerous !
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Lagrange Polynomials

For n+1 points (xi,yi), with

there is a unique interpolating polynomial of degree n with

 
i = 0,1, ,n          xi x j i

 
p(xi ) = yi         i = 0,1, ,n

Can construct this polynomial using the Lagrange polynomials,

defined as:

 

Li (x) =
(x x0 ) (x xi 1)(x xi+1) (x xn )

(xi x0 ) (xi xi 1)(xi xi+1) (xi xn )

Degree n (denominator is constant), and

Li (xk ) = i,k
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Lagrange Polynomials

The Lagrange Polynomials can be used to form the interpolating

polynomial:

p(x) = yiLi (x)
i=0

n

= yi
i=0

n x xk
xi xkk=0,k i

n

*

* Example: 10th order polynomial

      Lagrange=0.

*

      Do I=0,10

         term=1.

         Do k=0,10

            If (k.ne.I) then

               term=term*(x-x0(k))/(x0(I)-x0(k))

            Endif

         Enddo

         Lagrange=Lagrange+Y0(I)*term

      Enddo
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Lagrange Polynomials

Error estimation of the interpolation/extrapolation:

 

Define err(x) = f (x) p(x)    where f (x) is original function, 

p(x) is interpolating function

Choose  x xi  for any i = 0,1, ,n

Now define

F(x) = f (x) p(x) f (x ) p(x )( )
(x xi )

i=0

n

(x xi )
i=0

n

Now look at properties of F(x)
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Inter- and Extrapolation Error

 

F(xi ) = 0  for all i = 0,1, ,n    and F(x ) = 0.

I.e., F(x) has n + 2 zeroes

Rolle's theorem:  There exists a  between x , x0 , x1, , xn  such that

F (n+1)( ) = 0

so,

0 = f (n+1)( ) f (x ) p(x )( )
(n +1)!

(x xi )
i=0

n                  p(n+1)
= 0( )

but x  is arbitrary, so

e(x ) =
f (n+1)( )

(n +1)!
(x xi )

i=0

n

     for some   between x , x0 , x1, , xn
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Inter- and Extrapolation Error

Suppose we are trying to interpolate a sine function (our example).

We have 11 data points (n=10). Then

f (n+1)(x) =
d11 sin x

dx11
= cos x     so  f (n+1)( ) 1

e(x )
(x xi )

i=0

n

(n +1)!
    <

(b a)11

11!
 for interpolation

For extrapolation, the error grows as the power (n+1)
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Splines

A  spline is polynomial interpolation between the data points which

satisfies the following conditions:

 

Assume have data    xk , yk{ }     with  k = 0,n     i.e., n +1   points 

(also known as knots)

Define a = x0 , b = xn    and  arrange so that x0 < x1 < < xn 1 < xn

 

1. S(x) = Sk (x) for xk x xk+1 k = 0,1, ,n 1

2. S(xk ) = yk k = 0,1, ,n

3. Sk (xk+1) = Sk+1(xk+1) k = 0,1, ,n 2 i.e., S(x) is continuous
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Splines

Sk (x) = yk +
yk+1 yk
xk+1 xk

(x xk )

Linear Spline:

Quadratic Spline:

Sk (x) = yk + zk (x xk ) +
zk+1 zk

2(xk+1 xk )
(x xk )2

z0  has to be fixed, for example from requiring Sk (a) = z0 = 0.

then, 

                zk+1 = zk + 2
yk+1 yk
xk+1 xk
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Splines

The cubic spline satisfies the following conditions:

 

1. S(x) = Sk (x) for xk x xk+1 k = 0,1, ,n 1

Sk (x) = Sk ,0 + Sk ,1(x xk ) + Sk ,2 (x xk )2
+ Sk ,3(x xk )3

2. S(xk ) = yk k = 0,1, ,n

3. Sk (xk+1) = Sk+1(xk+1) k = 0,1, ,n 2 i.e., S(x) is continuous

4. Sk (xk+1) = Sk+1(xk+1) k = 0,1, ,n 2 i.e., S (x) is continuous

5. Sk (xk+1) = Sk+1(xk+1) k = 0,1, ,n 2 i.e., S (x) is continuous
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Splines

Need at least 3rd order polynomial to satisfy the conditions.

Number of parameters is 4n.  Fixing Sk(xk)=yk gives n+1

conditions.  Fixing Sk(xk+1)=Sk+1(xk+1) gives an additional n-1

conditions. Matching the first and second derivative gives another

2n-2 conditions, for a total of 4n-2 conditions.  Two more

conditions are needed to specify a unique cubic spline which

satisfies the conditions on the previous page:

S (a) = 0 S (b) = 0 Natural cubic spline

Can take other options for the boundary conditions
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Splines

Linear spline

Quadratic spline

Cubic spline
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Cubic Splines

The cubic spline is optimal in the following sense:

1. It is accurate to fourth order, and

2. It is the minimum curvature function linking the set of data

points.

 f(x)-S(x)
5

384
max
a x b

f 4( )(x) h4      where h = maxk xk+1 xk

Cubic spline satisfies  S (x)[ ]
2
dx

a

b

f (x)[ ]
2

a

b

dx

Curvature is defined as 
f (x)

1+ f (x)2( )
3/2 f (x)

Any smooth interpolating

function must have

curvature at least as

large as a cubic spline
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Cubic Splines

Proof of 2.

Start with algebraic identity   F2 S2
= (F S)2 2S(S F)

Let F = f (x), S = S (x)

then

f (x)[ ]
2

a

b

dx S (x)[ ]
2

a

b

dx = f (x) S (x)[ ]
2

a

b

dx 2 S (x) S (x) f (x)[ ]
a

b

dx

f (x) S (x)[ ]
2

a

b

dx 0

S (x) S (x) f (x)[ ]
a

b

dx = S (x) S (x) f (x)[ ]
xk

xk+1

dx
k=0

n 1

Now we use integration by parts to solve the integrals
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Cubic Splines

Recall: u(x)v (x)dx
a

b

= u(x)v(x)
a

b
u (x)v(x)dx

a

b

S (x) S (x) f (x)( )
a

b

dx = S (x) S (x) f (x)( )
xk

xk+1 S (x) S (x) f (x)( )
xk

xk+1

dx
k=0

n 1

The first term is

S (x) S (x) f (x)( )
xk

xk+1

k=0

n 1

= S (b) S (b) f (b)( ) S (a) S (a) f (a)( )

                                           = 0   From the boundary conditions for natural cubic spline

S (x) is a constant (since we have a cubic) and can be taken out of the integral, so

S (x) S (x) f (x)( )
a

b

dx = Sk S (x) f (x)( )
xk

xk+1

k=0

n 1

dx

                                         = Sk
k=0

n 1

S(x) f (x)( )
xk

xk+1

but since S(xk ) = f (xk ),   = 0
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Cubic Splines

f (x)[ ]
2

a

b

dx S (x)[ ]
2

a

b

dx 0

We have proven that a cubic spline has a smaller or equal

curvature than any function which fulfills the interpolation

requirements.  This also includes the function we started with.

Physical interpretation: a clamped flexible rod picks the minimum

curvature to minimize energy - spline
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Data Smoothing

If we have a large number of data points, interpolation with

polynomials, splines, etc is very costly in time and multiplies the

number of data. Smoothing (or data fitting) is a way of reducing.

In smoothing, we just want a parametrization which has no model

associated to it.  In fitting, we have a model in mind and try to

extract the parameters.

Data fitting is a full semester topic of its own.

A few brief words on smoothing of a data set.  The simplest

approach is to find a general function with free parameters which

can be adjusted to give the best representation of the data.  The

parameters are optimized by minimizing chi squared:

 

2
=

(yi f (xi; ))
2

wi
2

i=0

n
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Data Smoothing

 

2
=

(yi f (xi; ))
2

wi
2

i=0

n

 

  are the parameters of the function to be fit

yi   are the measured points at values xi
wi  is the weight given to point i

In our example, let’s take f (x;A, ) = Acos(x + )

And set wi = 1   i

Now we minimize 2 as a function of A and 
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Data Smoothing

Best fit for A=1, =3 /2

Acos(x + ) = 1 cos(x + 3 / 2) = cos x cos3 / 2 sin x sin 3 / 2 = sin x
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Exercises

1. Calculate the Lagrange Polynomial for the following data:

0.0182.

0.1351.

0.3680.5

10

yx

2. For the same data, find the natural cubic spline coefficients.

Plot the data, the lagrange polynomial and the cubic spline

interpolations.

3. Smooth the data in the table with the function f(x)=Aexp(-bx).

What did you get for A,b ?


