Some Remarks on LC TPC Resolution Studies - Request for Comments -

Peter Wienemann DESY

LC TPC Workshop LAL, Orsay, France January 12, 2005

Achievements

Peter Wienemann

Meeting on ILC Detectors with Gaseous Tracking

Achievements

- Many groups have built TPCs with GEMs, Micromegas or wires and made them work
- Numerous interesting first results from the data presented during workshops

Problems of Resolution Studies

Comparisons between results of different groups are difficult:

- different pad geometries
- different analysis methods
- different sets of cuts
- (partly) different gases

Too many differences to (easily) check consistency

Need for Consistency Checks

Consistency checks needed to:

- convince ourselves
- convince review bodies
- eventually have a common basis for design decisions

Pad Geometries

Note difference between pad size and pitch (~ 15 %):

Horiz. x vertical dimension	Spacing	Pad size	Pitch	Group
2 mm x 7 mm, 1.2 mm x 7 mm			Х	Victoria
2 mm x 6 mm	0.2 mm	Х		Hamburg
2 mm x 6 mm			Х	Aachen
1.27 mm x 15.5 mm, etc.		?	?	Karlsruhe
2 mm x 6 mm			Х	Carleton
2 mm x 10 mm, 1 mm x 10 mm		?	?	Berkeley/Orsay/Saclay
2 mm x 6 mm	0.3 mm	Х		Munich/KEK

In addition different pad alignments (staggered, non-staggered)

Analysis Methods

- modular reconstruction ↔ monolithic approach hit finding, track finding, track fitting
- global track fit ↔ local triplet method
- different implementations (including different ways of exception handling (FADC overflows, broken pads, numerical instabilities, ...), etc.)
- different definitions of resolution

Definition of Resolution?

Residual distributions (2 mm wide, non-staggered pads, B = 4 T):

Peter Wienemann

Meeting on ILC Detectors with Gaseous Tracking

Definition of Resolution?

Residual distributions (2 mm wide, staggered pads, B = 4 T):

Peter Wienemann

Meeting on ILC Detectors with Gaseous Tracking

Cuts

Cuts have large influence on resolution:

90 μ m - 160 μ m (at short drift distances, B = 4 T)

So far no consensus which cuts are legitimate

Useful: # tracks, φ angle, θ angle, horizontal position (no charge loss on left or right), # active rows, etc.

Prohibited: Any kind of cuts on charge sharing

Gases

Many different gas mixtures are in use:

- Ar-CH₄-CO₂ (93-5-2)
- Ar-CH₄ (90-10)
- Ar-CH₄ (95-5)
- Ar-CF₄ (97-3)
- Ar-IsoC₄H₁₀ (95-5)
- Ar-CO₂ (70-30)
- Ar-CO₂ (90-10)

Proposals

Start discussions about:

- What cuts are considered legitimate for a reference analysis?
 The cuts must be universally applicable.
- What analysis method could serve as reference?
 A consensus should cover a common definition of resolution and even exception handling.
- What is a reasonable pad geometry which could serve as a reference to which other geometries could be compared?
 - It must be reasonable for various gas candidates.

Proposals

- Is it sensible to exchange data sets between groups for cross-checks and comparisons?
 Data grid infrastructure might be useful for this.
- If yes, a common data format would be desirable (→ LCIO, *de facto* standard).
- A common modular reconstruction and analysis software might be fruitful (→ Marlin).
 A particular set of modules could serve as a reference analysis.
- Review references regularly and modify them if required.