

Status of the Aachen LC TPC Efforts

Michael Weber

Sabine Blatt Manuel Giffels Gordon Kaussen Martin Killenberg Sven Lotze Joachim Mnich Astrid Münnich Stefan Roth Adrian Vogel

III. Physikalisches Institut B

LC TPC Workshop, Orsay, January 2005

- TPC Prototype
- Hodoscope
- Readout Electronics
- Charge Width
- Ion Backdrift
- Simulations

TPC Prototype: Requirements

5T magnet at DESY: 280 mm bore

- SMD resistors as voltage divider
 minimal pitch = 2.8 mm
- Materials with low density (radiation length)
- GEM readout from test TPC should be used
- 26 kV for drift field available

TPC Prototype: Simulation

- Optimisation of the field cage
- Simulations of strip geometry with Maxwell 3D: copper strips on one or both sides, different ratios of strip width and distance with fixed pitch (2.8 mm)

TPC Prototype: Simulation

- Optimisation of the field cage
- Simulations of strip geometry with Maxwell 3D: copper strips on one or both sides, different ratios of strip width and distance with fixed pitch (2.8 mm)

TPC Prototype: Results of the Simulation

x

Copper strips: width 2.3 mm distance 0.5 mm

 \Rightarrow field with double-sided strips much better than with one-sided strips

$E_{parallel}$, strips on both sides

Michael Weber

Status of the Aachen LC TPC Efforts

TPC Prototype: Construction

 $E_{max} = 1000 \text{ V/cm}$

Michael Weber

Status of the Aachen LC TPC Efforts

6

TPC Prototype: Radiation Length

RWITHAACHEN Michael Weber Status of the Aachen LC TPC Efforts

TPC Prototype: First Results

First event

Hodoscope: Task

- Measurement of the drift velocity
- Measurement of the field homogeneity to the order of $\leq 10^{-3}$
- Measurement of the spatial resolution:
 Accuracy in x: ~ 60 μ m
 Accuracy in z: ~ 400 μ m
- ⇒ Goal: Determination of all properties of the TPC, to know and be able to correct all effects of the chamber for future measurements (e.g. Test Beam)

Hodoscope: Design

Michael Weber Status of the Aachen LC TPC Efforts

Hodoscope: Silicon Detectors

11

- CMS TOB module (Tracker Outer Barrel)
- 6 APV-Chips, 768 strips
- Pitch 122 μm
- Active area 93,9 mm x 190,0 mm
- Thickness 500 µm

Hodoscope: Silicon Detector Readout

Components:

- ARC Board (Readout module)
- DEPP (HV module)

Michael Weber

Status of the Aachen LC TPC Efforts

Hodoscope: Electronics

RNTHAACHEN

Hodoscope: Application of the Modules

Hodoscope: Spatial Resolution

Hodoscope: Single Point Resolution of the TPC

Hodoscope: Single Point Resolution Results

17

Hodoscope: Field Homogeneity of the TPC

Drift velocity in TDR-gas (Ar-CO₂-CH₄ 93-2-5)

Hodoscope: Field Homogeneity of the TPC

Drift velocity in TDR-gas (Ar-CO₂-CH₄ 93-2-5)

Maximal sensitivity at the steepest position (80 V/cm).

RWITH AACHEN

Hodoscope: Deviation of z_{TPC}

- deviations near the readout
- flat in the middle

RWITH AACHEN

Michael Weber

Status of the Aachen LC TPC Efforts

19

Hodoscope: Environmental Monitoring

- Sensors for temperature, humidity and pressure
- Readout via RS232 (microcontroller) and terminal emulation

pressure sensor

temperature sensor

RNTH AACHEN Michael Weber

Status of the Aachen LC TPC Efforts

20

Hodoscope: Dependance of v_{drift} on Pressure

RWITH AACHEN

ILC

22

Develop a test readout with 512 channels for our TPC Requirements:

- fast preamplifiers to study time resolution
- small preamplifiers to allow compact readout design with small pads
- fast ADCs to match the preamplifier speed
- fast data aquisition to allow reasonable operation in test beam runs

Readout Electronics: Preamplifier

Preshape 32

- predecessor of Premux & APV
- 32 channel preamplifier/shaper with parallel In/Out
- nominal peaking time: 45ns
- single ended output
- needs cable driver to get signal to reasonable distance

The preshape is bonded on a small board to perform tests. \Rightarrow possibility to reduce size for a readout with small pads.

Electronics: Preamplifier Results

Electronics: Cable Driver

- Old 8 channel amplifier cards
 - too large
 - too hot
 - single ended
 - not enough in supply
- \Rightarrow New design with 32 channels and double ended output.

Testing of prototype with one channel in progress.

Electronics: ADCs

Not enough fast high resolution ADCs available

- \Rightarrow Take a stepwise approach:
 - Use new preamplifiers with ALEPH TPDs (448 Channels)
 - Include one of the ADC candidates into this setup
 - Compare the candidates to the ALEPH TPDs and to each other
 - Choose the best candidate

Current challange:

Get the fast preamplifiers to work with the slow ALEPH TPDs.

Charge Width: Measurement

Test chamber, ⁵⁵Fe source

Pulse on one anode strip

RNTHAACHEN

Michael Weber

Anode strips, 300 μ m pitch

Spatial charge distribution

Charge Width: Dependency on B-Fleld

Measured with 5 T magnet at DESY

- E-/B-field dependency (caused by diffusion): $\sigma_{\rm diff} \propto \frac{1}{\sqrt{1 + \omega^2(B)\tau^2(E)}}$
- Transverse diffusion is overrated by the used
 MAGBOLTZ version.
- MAGBOLTZ simulation takes only the fields between the GEMs into account.

 \Rightarrow No significant broadening in GEMs!

Charge Width: Energy Resolution

Measured with 5 T magnet at DESY

- Determined from photo peak in ⁵⁵Fe spectrum
- Without B-field: $\sigma_E/E \lesssim 10\%$
- No deterioration in high magnetic fields

Ion Backdrift: Setup and Parameters

- Charge transfer determined by 7 chamber parameters (3 GEM voltages, 4 fields)
- Parametrisation of transfer coefficients
- Computation of ion backdrift (IB) and effective gain (G_{eff})
- Optimisation for minimal ion backdrift

Michael Weber

Ion Backdrift: Optimisation

31

Minimal ion backdrift can be achieved with:

- EDrift fixed at 240 V/cm
- $U_{\text{GEM 1}}$ small influence
- E_{T1} maximal
- \blacksquare $U_{\text{GEM 2}}$ small influence
- E_{T2} minimal
- $U_{\text{GEM 3}}$ maximal
- E_{Ind} maximal

 $U_{\text{GEM 1}}$ and $U_{\text{GEM 2}}$ allow variation of effective gain without changing IB.

Ion Backdrift: Latest Results

B = 4 T, measured at DESY

- Prediction from parametrisation:
 IB independent of G_{eff}
- Lower G_{eff} yields lower
 backdrifting charge Q_{IB}.

For
$$G_{\rm eff} = 1000$$
:
 $Q_{\rm IB} \approx 2.5 \, Q_{\rm primary}$

 Still an open question:
 How much ion backdrift can be tolerated?

Ion Backdrift: Charge Width

Measured with 5 T magnet at DESY

- Compare IB-optimised settings with non-optimised settings.
- Charge width becomes smaller with IB-optimised settings: $230 \,\mu\mathrm{m} \rightarrow 130 \,\mu\mathrm{m}$ at 4 T
- Energy resolution gets worse with IB-optimised settings: $\sigma_E/E \approx 10\% \rightarrow 13\%$

Track Distortions: Setup

Large TPC (1 m³) with triple-GEM readout

- ⁵⁵Fe source fixed on cathode
- Continuous intense ionisation
- Formation of ion tube between readout and source

Track Distortions: High Ion Backdrift

RNTHAACHEN

Michael Weber

Status of the Aachen LC TPC Efforts

Track Distortions: Reduced Ion Backdrift

RNTHAACHEN

Michael Weber

Status of the Aachen LC TPC Efforts

Simple and efficient tool to simulate a TPC \Rightarrow study specific properties of a TPC, e.g.

- Production and transfer of electric charges
- Influence of electric and magnetic fields
- Amplification in GEM structures
- Ion backdrift
- Pad response

_ _ _ _

TPC Simulation: Primary Ionisation

38

Input:

- Primary particles from generator
- TPC parameters (magnetic field, geometry etc.)

 \Rightarrow create number of electrons per track segment randomly according to a parametrisation of HEED results. (Approximated landau distribution.)

Output: coordinates for each produced primary electron

TPC Simulation: Track

- Build track from segments
- Calculate # of e⁻ for track segment → Approximation of clustering
- 3D information possible
- B fields possible

NTT : AACHEN

Michael Weber

TPC Simulation: Drift

Input:

- Coordinates of primary electrons
- TPC parameters (gas, fields, drift distance etc.)
- \Rightarrow Determine position after drift randomly according to MAGBOLTZ gas parametrisation

Output:

Coordinates for each drifted electron.

41

Input:

- File with coordinates of drifted electrons
- Pad geometry
- Readout frequency
- Voltages and fields of GEM setting
- Information about charge transfer coefficients

Output: Charge for each pad and timeslice,

still linked to the particle it was produced from

TPC Simulation: Amplification

 Calculate number of secondary e⁻ from parametrised charge transfer combined with binomial statistic

Integrate over 2D gaussian
 with sigma of charge cloud to
 get charge on pads
 → voxel information:
 charge on channel c in
 timeslice t

Michael Weber

TPC Simulation: Event Display

TPC Simulation: Real Event for Comparison

<u>F</u> ile <u>C</u> olors <u>H</u> elp	
Event:	
< 231 🗘 >	
Zoom B	
Phi Theta	
Top View	
Zoom B	
End View	
Zoom 20 🗢	
- Side View-	
Zoom B	
Show Elements	
🗵 Chambe	
🗵 Active Are	
🕅 Pads	* *
	(4)

45

- Working prototype
- Hodoscope as tool for various measurements
- Preamplifiers for new electronics
- Charge width and ion backdrift is well understood
- Simulation framework

- Measurements with new prototype in magnet
- Measurements with prototype and hodoscope in a test beam
- ADCs for new electronics
- Stability studies with reduced IB setting
- Inclusion of IB into the simulations

